
Brownian motion and Stochastic Calculus
Dylan Possamaï

Assignment 6—solutions

Exercise 1

Let (Wt)t≥0 be a Brownian motion. For any a > 0 consider the random times

Ta := inf
{

t > 0 : Wt ≥ a
}

, T a := inf
{

t > 0 : |Wt| ≥ a
}

,

1) Show that these random times are FW,P–stopping times.

2) Show that the Laplace transform of Ta has the value

EP[
exp(−µTa)

]
= exp

(
− a

√
2µ

)
, ∀µ > 0,

and show that P[Ta < ∞] = 1.

Hint: consider the martingale Mλ
t := exp(λWt − λ2

2 t) and use the optional sampling theorem.

4) Show that the Laplace transform of T a has the value

EP[
exp(−µT a)

]
= 1

cosh(a
√

2µ)
, ∀µ > 0.

1) These are the first entry times of closed sets by an F-adapted and continuous process, making them
F–stopping times.

2) Notice first that we know that P[Ta < +∞] = 1 since lim supt→+∞ Wt = − lim inft→∞ Wt = +∞. Next, for
any n ∈ N, we define

T n
a := Ta ∧ n.

Since T n
a is a bounded F–stopping time, the optional stopping theorem implies that for n ∈ N and any

λ ∈ R
EP[Mλ

T n
a

] = Mλ
0 = 1.

Moreover, on the event {Ta < ∞} we have

exp
(

λWT n
a

− λ2

2 (T n
a )

)
n→∞−→ exp

(
λWTa

− λ2

2 Ta

)
= eλa exp

(
− λ2

2 Ta

)
.

We conclude that for any λ > 0

exp
(

λWT n
a

− λ2

2 (T n
a n)

)
n→∞−→ eλa exp

(
− λ2

2 Ta

)
, P–a.s. (0.1)

Observe that for any n ∈ N we have

0 ≤ exp
(

λWT n
a

− λ2

2 (T n
a )

)
≤ eλa.

Thus, we deduce from (0.1), by applying the dominated convergence theorem, that for any λ > 0

1 = EP[
Mλ

T n
a

] n→∞−→ eλaEP
[

exp
(

− λ2

2 Ta

)]
,
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and so, for any λ > 0

eλaEP
[

exp
(

− λ2

2 Ta

)]
= 1. (0.2)

Fix any µ > 0. For λ :=
√

2µ, (0.2) yields the desired result.

3) For any λ > 0, consider the martingale (Nλ
t )t≥0 defined by

Nλ
t := Mλ

t + M−λ
t

2 = cosh
(
λWt

)
exp

(
− λ2

2 t

)
= cosh

(
λ|Wt|

)
exp

(
− λ2

2 t

)
.

The procedure in 1) (using now Nλ instead of Mλ and T a instead of Ta), using the inequality 0 ≤ NT a∧n ≤
cosh(λa), yields

cosh(λa)EP
[

exp
(

− λ2

2 T a

)]
= 1. (0.3)

Fix any µ > 0. For λ :=
√

2µ, (0.3) yields the desired result.

Exercise 2
Let W be a Brownian motion on [0, ∞) and S0 > 0, σ > 0, µ ∈ R constants. The stochastic process S = (St)t≥0 given
by

St := S0 exp
(
σWt + (µ − σ2/2)t

)
,

is called geometric Brownian motion.

1) Prove that for µ ̸= σ2/2, we have

lim
t→∞

St = +∞, P–a.s., or lim
t→∞

St = 0, P–a.s.

When do the respective cases arise?

2) Discuss the behaviour of St as t −→ ∞ in the case µ = σ2/2.

3) For µ = 0, show that S is a martingale, but not uniformly integrable.

1) From the definition of St, we get 1
t log St

S0
= σ Wt

t + µ − 1
2 σ2. The strong law of large numbers then gives,

P–a.s.,

lim
t→∞

log St

S0
=

{
+∞, if µ − 1

2 σ2 > 0,

−∞, if µ − 1
2 σ2 < 0,

and therefore, P–a.s.,

lim
t→∞

St =
{

+∞, if µ − 1
2 σ2 > 0,

0, if µ − 1
2 σ2 < 0.

2) If µ = 1
2 σ2, then St = S0eσWt . From the law of the iterated logarithm we have

lim sup
t→∞

Wt√
2t log log t

= 1, P–a.s., lim inf
t→∞

Wt√
2t log log t

= −1, P–a.s.

As a consequence, P–almost every path W·(ω) oscillates between +∞ and −∞ for t → ∞. Therefore, St

oscillates between 0 and +∞ for t → ∞.

3) For µ = 0, it is known that S is a martingale. Moreover, by 1), we have that

St
t→∞−→ 0, P–a.s.

As a martingale with S0 > 0, S cannot converge to 0 in L1(R, F ,P). Thus, S is not P–uniformly integrable.

Exercise 3
Let B be a standard Brownian motion. Let S⋆ ∈ [0, 1] be the smallest s ∈ [0, 1] with Bs = supt∈[0,1] Bt. Moreover, let
L := sup{t ∈ [0, 1] : Bt = 0} be the last time in the interval [0, 1] when B is at 0.
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1) Show that P–a.s., B attains its maximum on the interval [0, 1] at a unique point.

2) Let W be a standard Brownian motion, independent of B. Prove that whenever s ∈ [0, 1], we have

P[S⋆ < s] = P
[

sup
t∈[0,s]

Bt > sup
t∈[0,1−s]

Wt

]
.

3) Let N and N ′ be random variables distributed as N(0, 1) and independent. Show that

P[S⋆ < s] = P
[√

s|N | >
√

1 − s|N ′|
]

= 2 arcsin(
√

s)/π.

The law of S⋆ is called the Arcsine distribution.

4) Show also that

P[L < s] = P
[

sup
t∈[0,s]

Bt > sup
t∈[0,1−s]

Wt

]
, for s ∈ [0, 1],

so that L and S⋆ have the same law.

In this question, we will use the following observation. For s ∈ [0, 1]

sup
t∈[0,s]

{Bt − Bs} = sup
t∈[0,s]

{Bs−t − Bs} law= sup
t∈[0,s]

Bt
law= |Bs| law=

√
s|N |,

sup
t∈[s,1]

{Bt − Bs} = sup
t∈[0,1−s]

{Bs+t − Bs} law= sup
t∈[0,1−s]

B′
t

law= |B′
1−s| law=

√
1 − s|N ′|,

where N and N ′ are P-independent standard Gaussian random variables, and B′ is a Brownian motion
P-independent of B. Note also that in both lines we used the weak Markov property (plus time inversion
in the first line) and then the reflection principle. Also, by the weak Markov property at time s, the
random variables supt∈[0,s]{Bt − Bs} and supt∈[s,1]{Bt − Bs} are P-independent and hence(

sup
t∈[0,s]

{Bt − Bs}, sup
t∈[s,1]

{Bt − Bs}
)

law=
(

sup
t∈[0,s]

Bt, sup
t∈[0,1−s]

B′
t

)
law= (

√
s|N |,

√
1 − s|N ′|).

1) It is easy to see that it suffices to prove that for each s ∈ Q ∩ (0, 1), P–almost surely supt∈[0,s] Bt ̸=
supt∈[s,1] Bt. This follows from the observations made above, indeed, we get

P
[

sup
t∈[0,s]

Bt ̸= sup
t∈[s,1]

Bt

]
= P

[
sup

t∈[0,s]
{Bt − Bs} ≠ sup

t∈[s,1]
{Bt − Bs}

]
= P

[√
s|N | ≠

√
1 − s|N ′|

]
= 1.

2) Suppose that s ∈ [0, 1], then using the observations made above

P[S⋆ < s] = P
[

sup
t∈[0,s]

Bt > sup
t∈[s,1]

Bt

]
= P

[
sup

t∈[0,s]
{Bt − Bs} > sup

t∈[s,1]
{Bt − Bs}

]
= P

[
sup

t∈[0,s]
Bt > sup

t∈[0,1−s]
B′

t

]
.

3) Using the final equality in law derived above and the isotropy of the law of (N, N ′) we finally obtain

P[S⋆ < s] = P
[

sup
t∈[0,s]

Bt > sup
t∈[0,1−s]

B′
t

]
= P

[√
s|N | >

√
1 − s|N ′|

]
= P

[
(N, N ′) ∈ {(±r cos(θ), r sin(θ)) : |θ| < arcsin(

√
s), r > 0}

]
= 4 arcsin(

√
s)/(2π) = 2 arcsin(

√
s)/π.

4) For s ∈ [0, 1], we observe

{L < s} =
{

Bs < 0, sup
t∈[s,1]

{Bt − Bs} < |Bs|
} ⋃ {

− Bs < 0, sup
t∈[s,1]

{(−Bt) − (−Bs)} < |Bs|
}

.
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The two events in the union are disjoint, and since B and −B have the same law, we can therefore
compute

P[L < s] = 2P
[
Bs < 0, sup

t∈[s,1]
{Bt − Bs} < |Bs|

]
= P

[
sup

t∈[s,1]
{Bt − Bs} < |Bs|

]
.

We observe that by the weak Markov property |Bs| and supt∈[s,1]{Bt −Bs} are P-independent. Also |Bs| law=
supt∈[0,s] Bt and supt∈[s,1]{Bt − Bs} law= supt∈[0,1−s] B′ and since B and B′ are P-independent by assumption,
we get (

|Bs|, sup
t∈[s,1]

{Bt − Bs}
)

law=
(

sup
t∈[0,s]

Bt, sup
t∈[0,1−s]

B′
t

)
,

from which the result is immediate.

Exercise 4

Let (Bt)t≥0 be a Brownian motion and Mt := sups≤t Bs. Show that the joint distribution of the pair (Bt, Mt) is
absolutely continuous with density

ft(x, y) := 2(2y − x)√
2πt3

exp
(

− (2y − x)2

2t

)
1{y≥0}1{x≤y}, (x, y) ∈ R2.

Hint: Show that

(i) for y > 0, x ≤ y, P[Bt ≤ x, Mt ≥ y] = P[Bt ≥ 2y − x];

(ii) for y > 0, x ≤ y,

P[Bt ≤ x, Mt ≤ y] = Φ
(

x√
t

)
− Φ

(
x − 2y√

t

)
,

where Φ is the distribution function of a standard Gaussian random variable;

(iii) for y > 0, x ≥ y,

P[Bt ≤ x, Mt ≤ y] = P[Mt ≤ y] = Φ
(

y√
t

)
− Φ

(
− y√

t

)
,

and for y ≤ 0, P[Bt ≤ x, Mt ≤ y] = 0.

To show the reflection principle, let Ty = inf{t > 0 : Bt ≥ y} be the first time the Brownian motion is
greater than y. Then, {Ty ≤ t} = {Mt ≥ y} for y ≥ 0. Furthermore, since BTy

= y, we have

P
[
Bt ≤ x, Mt ≥ y

]
= P

[
Bt ≤ x, Ty ≤ t

]
= P

[
Bt − BTy

≤ x − y, Ty ≤ t
]
.

Relying on the strong Markov property, we obtain

P
[
Bt − BTy ≤ x − y, Ty ≤ t

]
= EP[

1{Ty≤t}P[Bt − BTy ≤ x − y|Ty]
]

= EP[
1{Ty≤t}P[Bt − BTy ≤ x − y]

]
,

since (B̃u := BTy+u − BTy
, u ≥ 0) is a Brownian motion independent of (Bt, t ≤ Ty). We also note that −B̃

and B̃ have the same law. Hence,

EP[
1{Ty≤t}P[Bt − BTy ≤ x − y]

]
= EP[

1{Ty≤t}P[Bt − BTy
≥ y − x]

]
= EP[

1{Ty≤t}P[Bt − BTy
≥ y − x|Ty]

]
= P[Bt ≥ 2y − x, Ty ≤ t]. (0.4)
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The right-hand side of (0.4) is equal to P[Bt ≥ 2y − x] since, from x ≤ y we have 2y − x ≥ y which implies
that, on the set {Bt ≥ 2y − x}, one has Mt ≥ y. Therefore, it follows that, for y ≥ 0, x ≤ y,

P[Bt ≤ x, Mt ≤ y] = P[Bt ≤ x] − P[Bt ≤ x, Mt ≥ y] (1)= P[Bt ≤ x] − P[Bt ≥ 2y − x], (0.5)

and hence the first hint is obtained.

For 0 ≤ y ≤ x, since Mt ≥ Bt we get

P[Bt ≤ x, Mt ≤ y] = P[Bt ≤ y, Mt ≤ y] = P[Mt ≤ y].

Furthermore, by setting x = y in (0.5)

P[Bt ≤ y, Mt ≤ y] = Φ
(

y√
t

)
− Φ

(
− y√

t

)
,

hence the second hint is obtained. Finally, noticed that for y < 0,

P[Bt ≤ x, Mt ≤ y] = 0.

since Mt ≥ M0 = 0. Finally, the density for the joint law of (B, M) is obtained by taking derivatives.
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